Reduction Formula 1
Very Important For B.Arch Students In T.U.In this video we find a reduction formula for
$\begin{aligned}I_{n}=\int \sin ^{n}xdx\\ .\end{aligned}$
-------------------------------------------------
The Reduction Formula For
$\begin{aligned}I_{n}=\dfrac {-1}{n}\sin ^{n-1}x\cos x+\dfrac {n-1}{n}I_{n-2}\\
\The Ultimate Integrals Are\
\ {I_{0}}{}=x+C\\
I_{1}=-\cos x+C\end{aligned}$
-------------------------------------------------
The Reduction Formula For
$\begin{aligned}I_{n}=\int \sin ^{n}xdx\\ .\end{aligned}$
is given by $\begin{aligned}I_{n}=\dfrac {-1}{n}\sin ^{n-1}x\cos x+\dfrac {n-1}{n}I_{n-2}\\
\The Ultimate Integrals Are\
\ {I_{0}}{}=x+C\\
I_{1}=-\cos x+C\end{aligned}$