HALF RANGE SERIES

Consider a function fla)

defined in [o, k].

#1. Extend fa) in to an even function in [-1, 1)

Then the fourier series of f(z) will be a cosine series, given by

$$f(a) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \log \frac{n\pi z}{\ell}$$

Where $a_0 = \frac{2}{I} \int f(x) dx$

$$a_n = \frac{2}{l} \int f(x) \cos \frac{n\pi^2 dx}{2} dx$$

#2. Extend f(x) into an odd function in [-l, l]. Then the Fourier series of fa) will be a sine series, given by $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{n}$ where $b_n = \frac{2}{l} \int f(x) \sin \frac{mx}{l} dx$ 1. Obtain the half range cosine

Series for f(x) = x, in the interval EE (OSXET 1/ P= x-0 = T Let the read series be $f(\pi) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos \frac{n\pi z}{n}$

ie.
$$f(a) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n (os nz(i))$$

$$a_0 = \frac{2}{l} \int_0^{\pi} f(x) dx$$

$$= \frac{2}{l} \int_0^{\pi} \int_0^{\pi} dx$$

$$ie. \ a_o = \pi$$

Now,
$$a_0 = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{\pi x}{\pi} dx$$

ie.
$$a_n = \frac{2}{\pi} \int x \cos nx \, dx$$

ie.
$$a_n = \frac{2}{\pi} \left[\left\{ x \left(\frac{\sin nx}{n} \right) \right\}_0^{\pi} - \left\{ 1 \cdot \left(\frac{-\cos nx}{n^2} \right) \right\}_0^{\pi} \right]$$

ie.
$$a_n = \frac{2}{\pi} \left[\frac{1}{n} \left\{ z \sin nz \right\}_0^{\pi} + \frac{1}{n^2} \left\{ \cos nz \right\}_0^{\pi} \right]$$

ie.
$$a_n = \frac{2}{\pi} \left[\frac{1}{n} \{ 0 - 0 \} + \frac{1}{n^2} \{ (-1)^2 - 1 \} \right]$$

ie.
$$a_n = \frac{2}{\pi n^2} \left\{ (-1)^n - 1 \right\}$$

2 (Find the half range
Fourier sine series for

$$f(x) = e^{2x}$$
, $0 < x < \pi$

Let the required series be
$$f(x) = \sum_{n=0}^{\infty} b_n \sin \frac{n\pi x}{l}$$

$$b_n = \frac{2}{l} \int f(x) \sin \frac{n\pi z}{l} dx$$

i.e.
$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$
(i)
where $b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} e^{2x} \sin nx \, dx$

ie.
$$b_n = \frac{2}{\pi} \left[\frac{e^{2x}}{2^2 + n^2} \left\{ 2 \sin nx - n \cos nx \right\} \right]_0^{\pi}$$

ie.
$$b_0 = \frac{2}{\pi (4+n^2)} \left[e^{2x} \left\{ 2 \sin nx - n\cos nx \right\} \right]_0^{\pi}$$

ie.
$$b_n = \frac{2}{\pi (4+n^2)} \left[e^{2\pi} \{ o - n (-1)^n \} - e^o \{ o - n \} \right]$$

ie.
$$b_n = \frac{2}{\pi(4+n^2)} \left\{ n - n e^{2\pi(-1)^n} \right\}$$
ie. $b_n = \frac{2}{\pi(4+n^2)} \left\{ 1 - e^{(-1)^n} \right\}$

ie.
$$b_n = \frac{2n}{\pi(4+n^2)} \left\{ 1 - e(-1)^n \right\}$$

$$\therefore f(a) = \sum_{n=1}^{\infty} \frac{2n \{1-(1)^{2}\}}{\pi(4+n^{2})} Sin nx$$